Skip to content

3. Orthogonal Projection


1. 키워드

  • Orthogonality
  • Orthonormality
  • Orthogonal Basis(직교기저)
  • Orthonormal Basis(정규직교기저)
  • Orthogonal Projection(정사영)


2. Orthogonal Projection Perspective

Back to the case of invertible \(C=A^{T} A\), consider the orthogonal projection of \(\mathbf{b}\) onto \(\operatorname{Col}A\) as \(\hat{\mathbf{b}}=f(\mathbf{b})=A \hat{\mathbf{x}}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}\).


3. Orthogonal and Orthonormal Sets

Definition: A set of vectors \(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}\) in \(\mathbb{R}^{n}\) is an orthogonal set if each pair of distinct vectors from the set is orthogonal, that is, if \(\mathbf{u}_{i} \cdot \mathbf{u}_{j}=0\) whenever \(i \neq j\).


Definition: A set of vectors \(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}\) in \(\mathbb{R}^{n}\) is an orthonormal set if it is an orthogonal set of unit vectors.


Is an orthogonal (or orthonormal) set also a linearly independent set? What about its converse?


4. Orthogonal and Orthonormal Basis

Consider basis \(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}\) of a \(p\)-dimensional subspace \(W\) in \(\mathbb{R}^{n}\).

Can we make it as an orthogonal (or orthonormal) basis?

  • Yes, it can be done by Gram-Schmidt process. → QR factorization.

Given the orthogonal basis \(\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{p}\right\}\) of \(W\), let's compute the orthogonal projection of \(\mathbf{y} \in \mathbb{R}^{r}\) onto \(W\).


5. Orthogonal Projection \(\hat{\mathbf{y}}\) of \(\mathbf{y}\) onto Line

001


Consider the orthogonal projection \(\hat{\mathbf{y}}\) of \(\mathbf{y}\) onto one-dimensional subspace \(L\).


\(\hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}\)


If \(\mathbf{u}\) is a unit vector, \(\hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=(\mathbf{y} \cdot \mathbf{u}) \mathbf{u}\).


6. Orthogonal Projection \(\hat{\mathbf{y}}\) of \(\mathbf{y}\) onto Plane

002


Consider the orthogonal projection \(\hat{\mathbf{y}}\) of \(\mathbf{y}\) onto two-dimensional subspace \(W\).


\(\hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}\)


If \(\mathbf{u}_{1}\) and \(\mathbf{u}_{2}\) are unit vectors, \(\hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}\).

Projection is done independently on each orthogonal basis vector.


7. Orthogonal Projection when \(\mathbf{y} \in W\)

003


Consider the orthogonal projection \(\hat{\mathbf{y}}\) of \(\mathbf{y}\) onto two-dimensional subspace \(W\), where \({\mathbf{y} \in W}\).


\(\hat{\mathbf{y}}=\operatorname{proj}_{L} \mathbf{y}{=\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}\)


If \(\mathbf{u}_{1}\) and \(\mathbf{u}_{2}\) are unit vectors, \(\hat{\mathbf{y}}= \mathbf{y}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{y} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2}\).

The solution is the same as before. Why?


8. Transformation: Orthogonal Projection

Consider a transformation of orthogonal projection \(\hat{\mathbf{b}}\) of \(\mathbf{b}\), given orthonormal basis \(\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}\) of a subspace \(W\):

\[ \begin{aligned}\hat{b} &=f(\mathbf{b})=\left(\mathbf{b} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\left(\mathbf{b} \cdot \mathbf{u}_{2}\right) \mathbf{u}_{2} \\&=\left(\mathbf{u}_{1}^{T} \mathbf{b}\right) \mathbf{u}_{1}+\left(\mathbf{u}_{2}^{T} \mathbf{b}\right) \mathbf{u}_{2} \\&=\mathbf{u}_{1}\left(\mathbf{u}_{1}^{T} \mathbf{b}\right)+\mathbf{u}_{2}\left(\mathbf{u}_{2}^{T} \mathbf{b}\right) \\&=\left(\mathbf{u}_{1} \mathbf{u}_{1}^{T}\right) \mathbf{b}+\left(\mathbf{u}_{2} \mathbf{u}_{2}^{T}\right) \mathbf{b} \\&=\left(\mathbf{u}_{1} \mathbf{u}_{1}^{T}+\mathbf{u}_{2} \mathbf{u}_{2}^{T}\right) \mathbf{b} \\&=\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]\left[\begin{array}{l}\mathbf{u}_{1}^{T} \\\mathbf{u}_{2}^{T}\end{array}\right] \mathbf{b}=U U^{T} \mathbf{b}\end{aligned} \text{ → Linear transformation} \]


9. Orthogonal Projection Perspective

Let's verify the following, when \(A=U=\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]\) has orthonormal columns.

  • Back to the case of invertible \(C=A^{T} A\), consider the orthogonal projection of \(\mathbf{b}\) onto \(\operatorname{Col}A\) as \(\hat{\mathbf{b}}=A \hat{\mathbf{x}}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=f(\mathbf{b})\).


\(C=A^{T} A=\left[\begin{array}{l}\mathbf{u}_{1}^{T} \\\mathbf{u}_{2}^{T}\end{array}\right]\left[\begin{array}{ll}\mathbf{u}_{1} & \mathbf{u}_{2}\end{array}\right]=I\). Thus, \(\hat{\mathbf{b}}=A \hat{\mathbf{x}}=A\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}=A(I)^{-1} A^{T} \mathbf{b}=A A^{T} \mathbf{b}=U U^{T} \mathbf{b}\)


References