Skip to content

2. Linear Equation and Linear System


1. 키워드

  • Linear Equation(선형방정식): 최고 차수의 항의 차수가 1을 넘지 않는 다항 방정식
  • Linear System(선형시스템): 동일한 변수를 포함하는 하나 이상의 선형방정식의 모음
  • Identity Matrix(단위 행렬): 대각선 항목이 모두 1이고 다른 모든 항목이 0인 정방 행렬
  • Inverse Matrix(역행렬): 어떤 행렬과 곱했을 때 곱셈에 대한 단위 행렬이 나오게 하는 행렬


2. Linear Equation

A linear equation in the variables \(x_{1}, \cdots, x_{n}\) is an equation that can be written in the form \(a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b\), where \(b\) and the coefficients \(a_{1}, \cdots, a_{n}\) are real or complex numbers that are usually known in advance.

The above equation can be written as \(\mathbf{a}^{T} \mathbf{x}=b\) where \(\mathbf{a}=\left[\begin{array}{c}a_{1} \\a_{2} \\\vdots \\a_{n}\end{array}\right]\) and \(\mathbf{X}=\left[\begin{array}{c}x_{1} \\x_{2} \\\vdots \\x_{n}\end{array}\right]\).


3. Linear System: Set of Equations

A System of linear equations (or a linear system) is a collection of one or more linear equations involving the same variables - say, \(x_{1}, \cdots, x_{n}\).


4. Linear System Example

Suppose we collected persons' weight, height, and life-span (e.g., how long s/he lived)


Person ID Weight Height Is_smoking Life-span
1 60kg 5.5ft Yes (=1) 66
2 65kg 5.0ft No (=0) 74
3 55kg 6.0ft Yes (=1) 78


We want to set up the following linear system:

\[ \begin{aligned}&60 x_{1}+5.5 x_{2}+1 \cdot x_{3}=66 \\&65 x_{1}+5.0 x_{2}+0 \cdot x_{3}=74 \\&55 x_{1}+6.0 x_{2}+1 \cdot x_{3}=78\end{aligned} \]

Once we solve for \(x_{1}\), \(x_{2}\), and \(x_{3}\), given a new person with his/her weight, height, and is_smoking, we can predict his/her life-span.


The essential information of a linear system can be written compactly using a matrix.

In the following set of equations:

\[ \begin{aligned}&60 x_{1}+5.5 x_{2}+1 \cdot x_{3}=66 \\&65 x_{1}+5.0 x_{2}+0 \cdot x_{3}=74 \\&55 x_{1}+6.0 x_{2}+1 \cdot x_{3}=78\end{aligned} \]

Let’s collect all the coefficients on the left and form a matrix:

\[ A=\left[\begin{array}{lll}60 & 5.5 & 1 \\65 & 5.0 & 0 \\55 & 6.0 & 1\end{array}\right] \]

Also, let’s form two vectors:

\[ \mathbf{x}=\left[\begin{array}{lll}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\text{, } \mathbf{b}=\left[\begin{array}{l}66 \\ 74 \\ 78\end{array}\right] \]


5. From Multiple Equations to Single Matrix Equation

Multiple equations can be converted into a single matrix equations:

\[ \begin{aligned}&60 x_{1}+5.5 x_{2}+1 \cdot x_{3}=66 \\&65 x_{1}+5.0 x_{2}+0 \cdot x_{3}=74 \\&55 x_{1}+6.0 x_{2}+1 \cdot x_{3}=78\end{aligned} \text{ → } \left[\begin{array}{lll}60 & 5.5 & 1 \\65 & 5.0 & 0 \\55 & 6.0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{l}66 \\74 \\78\end{array}\right] \text{ ← } \begin{aligned}&\mathbf{a}_{1}^{T} \mathbf{x}=66 \\&\mathbf{a}_{2}^{T} \mathbf{x}=74 \\&\mathbf{a}_{2}^{T} \mathbf{x}=78\end{aligned} \]

How can we solve for \(\mathbf{x}\)?


6. Identity Matrix

Definition: An identity matrix is a square matrix whose diagonal entries are all 1's, and all the other entries are zeros. Often, we denote it as \(I_{n} \in \mathbb{R}^{n \times n}\).

Example

\[ I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \]


An identity matrix \(I_{n}\) preserves any vector \(\mathbf{x} \in \mathbb{R}^{n}\) after multiplying \(\mathbf{x}\) by \(I_{n}\):

\[ \forall \mathbf{x} \in \mathbb{R}^{n}\text{, } I_{n} \mathbf{x}=\mathbf{x} \]


7. Inverse Matrix

Definition: For a square matrix \(A \in \mathbb{R}^{{n \times n}}\), its inverse matrix \(A^{-1}\) is defined such that \(A^{-1} A=A A^{-1}=I_{n}\) .


For a \(2 \times 2\) matrix \(A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\), its inverse matrix \(A^{-1}\) is defined as \(A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\-c & a\end{array}\right]\).


8. Solving Linear System via Inverse Matrix

We can now solve \(A \mathbf{x}=\mathbf{b}\) as follows:

\[ \begin{gathered}A \mathbf{x}=\mathbf{b} \\A^{-1} A \mathbf{x}=A^{-1} \mathbf{b} \\I_{n} \mathbf{x}=A^{-1} \mathbf{b} \\\mathbf{x}=A^{-1} \mathbf{b}\end{gathered} \]


Example

\[ \left[\begin{array}{lll}60 & 5.5 & 1 \\65 & 5.0 & 0 \\55 & 6.0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{l}66 \\74 \\78\end{array}\right] \text{ → } A^{-1}=\left[\begin{array}{ccc}0.0870 & 0.0087 & -0.0870 \\-1.1304 & 0.0870 & 1.1314 \\2.0000 & -1.0000 & -1.0000\end{array}\right] \]

One can verify \(A^{-1} A=A A^{-1}=I_{n}\) .


\(\mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{ccc}0.0870 & 0.0087 & -0.0870 \\-1.1304 & 0.0870 & 1.1314 \\2.0000 & -1.0000 & -1.0000\end{array}\right]\left[\begin{array}{l}66 \\74 \\78\end{array}\right]=\left[\begin{array}{c}-0.4 \\20 \\-20\end{array}\right]\)


Now, the life-span can be written as \((\text { life-span })=-0.4 \times(\text { weight })+20 \times(\text { height })-20 \times(\text { is\_smoking })\).


9. Non-Invertible Matrix \(A\) for \(A \mathbf{x}=\mathbf{b}\)

Note that if \(A\) is invertible, the solution is uniquely obtained as \(\mathbf{x}=A^{-1} \mathbf{b}\).

What if \(A\) is non-invertible, i.e., the inverse does not exist?

E.g., For \(A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\), in \(A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]\), the denominator \(a d-b c =0\), so \(A\) is not invertible.

For \(A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\), \(a d-b c\) is called the determinant of \(A\), or \(\operatorname{det}A\).


10. Does a Matrix Have an Inverse Matrix?

\(\operatorname{det}A\) determines whether \(A\) is invertible (when \(\operatorname{det}A \neq 0\)) or not (when \(\operatorname{det}A = 0\)).


11. Non-Invertible Matrix \(A\) for \(A \mathbf{x}=\mathbf{b}\)

Back to the linear system, if \(A\) is non-invertible, \(A \mathbf{x}=\mathbf{b}\) will have either no solution or infinitely many solutions.


12. Rectangular Matrix \(A\) in \(A \mathbf{x}=\mathbf{b}\)

What if \(A\) is a rectangular matrix, e.g., \(A \in \mathbb{R}^{m \times n}\), where \(m \neq n\)?


\(\left[\begin{array}{lll}60 & 5.5 & 1 \\65 & 5.0 & 0 \\55 & 6.0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\x_{2} \\x_{3}\end{array}\right]=\left[\begin{array}{l}66 \\74 \\78\end{array}\right]\)


Recall \(m=\) #equations and \(n=\) #variables.

\(m<n\): more variables than equations

  • Usually infinitely many solutions exist (under-determined system).

\(m>n\): more equations than variables

  • Usually no solution exists (over-determined system).

References