Skip to content

1. Introduction to Kubernetes


1. 쿠버네티스란

이 페이지에서는 쿠버네티스 개요를 설명한다.


쿠버네티스는 컨테이너화된 워크로드와 서비스를 관리하기 위한 이식성이 있고, 확장가능한 오픈소스 플랫폼이다. 쿠버네티스는 선언적 구성과 자동화를 모두 용이하게 해준다. 쿠버네티스는 크고, 빠르게 성장하는 생태계를 가지고 있다. 쿠버네티스 서비스, 기술 지원 및 도구는 어디서나 쉽게 이용할 수 있다.


쿠버네티스란 명칭은 키잡이(helmsman)나 파일럿을 뜻하는 그리스어에서 유래했다. K8s라는 표기는 "K"와 "s"와 그 사이에 있는 8글자를 나타내는 약식 표기이다. 구글이 2014년에 쿠버네티스 프로젝트를 오픈소스화했다. 쿠버네티스는 프로덕션 워크로드를 대규모로 운영하는 15년 이상의 구글 경험과 커뮤니티의 최고의 아이디어와 적용 사례가 결합되어 있다.


2. 배포 발전 과정

1) 전통적인 배포 시대

초기 조직은 애플리케이션을 물리 서버에서 실행했었다. 한 물리 서버에서 여러 애플리케이션의 리소스 한계를 정의할 방법이 없었기에, 리소스 할당의 문제가 발생했다. 예를 들어 물리 서버 하나에서 여러 애플리케이션을 실행하면, 리소스 전부를 차지하는 애플리케이션 인스턴스가 있을 수 있고, 결과적으로는 다른 애플리케이션의 성능이 저하될 수 있었다. 이에 대한 해결책은 서로 다른 여러 물리 서버에서 각 애플리케이션을 실행하는 것이 있다. 그러나 이는 리소스가 충분히 활용되지 않는다는 점에서 확장 가능하지 않았으므로, 물리 서버를 많이 유지하기 위해서 조직에게 많은 비용이 들었다.


2) 가상화된 배포 시대

그 해결책으로 가상화가 도입되었다. 이는 단일 물리 서버의 CPU에서 여러 가상 시스템 (VM)을 실행할 수 있게 한다. 가상화를 사용하면 VM간에 애플리케이션을 격리하고 애플리케이션의 정보를 다른 애플리케이션에서 자유롭게 액세스 할 수 없으므로, 일정 수준의 보안성을 제공할 수 있다.


가상화를 사용하면 물리 서버에서 리소스를 보다 효율적으로 활용할 수 있으며, 쉽게 애플리케이션을 추가하거나 업데이트할 수 있고 하드웨어 비용을 절감할 수 있어 더 나은 확장성을 제공한다. 가상화를 통해 일련의 물리 리소스를 폐기 가능한(disposable) 가상 머신으로 구성된 클러스터로 만들 수 있다.


각 VM은 가상화된 하드웨어 상에서 자체 운영체제를 포함한 모든 구성 요소를 실행하는 하나의 완전한 머신이다.


3) 컨테이너 개발 시대

컨테이너는 VM과 유사하지만 격리 속성을 완화하여 애플리케이션 간에 운영체제(OS)를 공유한다. 그러므로 컨테이너는 가볍다고 여겨진다. VM과 마찬가지로 컨테이너에는 자체 파일 시스템, CPU 점유율, 메모리, 프로세스 공간 등이 있다. 기본 인프라와의 종속성을 끊었기 때문에, 클라우드나 OS 배포본에 모두 이식할 수 있다.


컨테이너는 다음과 같은 추가적인 혜택을 제공하기 때문에 인기가 있다.


  • 기민한 애플리케이션 생성과 배포: VM 이미지를 사용하는 것에 비해 컨테이너 이미지 생성이 보다 쉽고 효율적임.
  • 지속적인 개발, 통합 및 배포: 안정적이고 주기적으로 컨테이너 이미지를 빌드해서 배포할 수 있고 (이미지의 불변성 덕에) 빠르고 효율적으로 롤백할 수 있다.
  • 개발과 운영의 관심사 분리: 배포 시점이 아닌 빌드/릴리스 시점에 애플리케이션 컨테이너 이미지를 만들기 때문에, 애플리케이션이 인프라스트럭처에서 분리된다.
  • 가시성(observability): OS 수준의 정보와 메트릭에 머무르지 않고, 애플리케이션의 헬스와 그 밖의 시그널을 볼 수 있다.
  • 개발, 테스팅 및 운영 환경에 걸친 일관성: 랩탑에서도 클라우드에서와 동일하게 구동된다.
  • 클라우드 및 OS 배포판 간 이식성: Ubuntu, RHEL, CoreOS, 온-프레미스, 주요 퍼블릭 클라우드와 어디에서든 구동된다.
  • 애플리케이션 중심 관리: 가상 하드웨어 상에서 OS를 실행하는 수준에서 논리적인 리소스를 사용하는 OS 상에서 애플리케이션을 실행하는 수준으로 추상화 수준이 높아진다.
  • 느슨하게 커플되고, 분산되고, 유연하며, 자유로운 마이크로서비스: 애플리케이션은 단일 목적의 머신에서 모놀리식 스택으로 구동되지 않고 보다 작고 독립적인 단위로 쪼개져서 동적으로 배포되고 관리될 수 있다.
  • 리소스 격리: 애플리케이션 성능을 예측할 수 있다.
  • 자원 사용량: 리소스 사용량: 고효율 고집적.


3. 쿠버네티스의 필요성

컨테이너는 애플리케이션을 포장하고 실행하는 좋은 방법이다. 프로덕션 환경에서는 애플리케이션을 실행하는 컨테이너를 관리하고 가동 중지 시간이 없는지 확인해야 한다. 예를 들어 컨테이너가 다운되면 다른 컨테이너를 다시 시작해야 한다. 이 문제를 시스템에 의해 처리한다면 더 쉽지 않을까?


그것이 쿠버네티스가 필요한 이유이다! 쿠버네티스는 분산 시스템을 탄력적으로 실행하기 위한 프레임 워크를 제공한다. 애플리케이션의 확장과 장애 조치를 처리하고, 배포 패턴 등을 제공한다. 예를 들어, 쿠버네티스는 시스템의 카나리아 배포를 쉽게 관리 할 수 있다.


쿠버네티스는 다음을 제공한다.


  • 서비스 디스커버리와 로드 밸런싱: 쿠버네티스는 DNS 이름을 사용하거나 자체 IP 주소를 사용하여 컨테이너를 노출할 수 있다. 컨테이너에 대한 트래픽이 많으면, 쿠버네티스는 네트워크 트래픽을 로드밸런싱하고 배포하여 배포가 안정적으로 이루어질 수 있다.
  • 스토리지 오케스트레이션: 쿠버네티스를 사용하면 로컬 저장소, 공용 클라우드 공급자 등과 같이 원하는 저장소 시스템을 자동으로 탑재 할 수 있다.
  • 자동화된 롤아웃과 롤백: 쿠버네티스를 사용하여 배포된 컨테이너의 원하는 상태를 서술할 수 있으며 현재 상태를 원하는 상태로 설정한 속도에 따라 변경할 수 있다. 예를 들어 쿠버네티스를 자동화해서 배포용 새 컨테이너를 만들고, 기존 컨테이너를 제거하고, 모든 리소스를 새 컨테이너에 적용할 수 있다.
  • 자동화된 빈 패킹(bin packing): 컨테이너화된 작업을 실행하는데 사용할 수 있는 쿠버네티스 클러스터 노드를 제공한다. 각 컨테이너가 필요로 하는 CPU와 메모리(RAM)를 쿠버네티스에게 지시한다. 쿠버네티스는 컨테이너를 노드에 맞추어서 리소스를 가장 잘 사용할 수 있도록 해준다.
  • 자동화된 복구(self-healing): 쿠버네티스는 실패한 컨테이너를 다시 시작하고, 컨테이너를 교체하며, '사용자 정의 상태 검사'에 응답하지 않는 컨테이너를 죽이고, 서비스 준비가 끝날 때까지 그러한 과정을 클라이언트에 보여주지 않는다.
  • 시크릿과 구성 관리: 쿠버네티스를 사용하면 암호, OAuth 토큰 및 SSH 키와 같은 중요한 정보를 저장하고 관리 할 수 있다. 컨테이너 이미지를 재구성하지 않고 스택 구성에 시크릿을 노출하지 않고도 시크릿 및 애플리케이션 구성을 배포 및 업데이트 할 수 있다.


4. 쿠버네티스 컴포넌트

쿠버네티스를 배포하면 클러스터를 얻는다.


쿠버네티스 클러스터는 컨테이너화된 애플리케이션을 실행하는 노드라고 하는 워커 머신의 집합. 모든 클러스터는 최소 한 개의 워커 노드를 가진다.


워커 노드는 애플리케이션의 구성요소인 파드를 호스트한다. 컨트롤 플레인은 워커 노드와 클러스터 내 파드를 관리한다. 프로덕션 환경에서는 일반적으로 컨트롤 플레인이 여러 컴퓨터에 걸쳐 실행되고, 클러스터는 일반적으로 여러 노드를 실행하므로 내결함성과 고가용성이 제공된다.


이 문서는 완전히 작동하는 쿠버네티스 클러스터를 갖기 위해 필요한 다양한 컴포넌트들에 대해 요약하고 정리한다.


001


5. 컨트롤 플레인 컴포넌트

컨트롤 플레인 컴포넌트는 클러스터에 관한 전반적인 결정(예를 들어, 스케줄링)을 수행하고 클러스터 이벤트(예를 들어, 디플로이먼트의 replicas 필드에 대한 요구 조건이 충족되지 않을 경우 새로운 파드를 구동시키는 것)를 감지하고 반응한다.


컨트롤 플레인 컴포넌트는 클러스터 내 어떠한 머신에서든지 동작할 수 있다. 그러나 간결성을 위하여, 구성 스크립트는 보통 동일 머신 상에 모든 컨트롤 플레인 컴포넌트를 구동시키고, 사용자 컨테이너는 해당 머신 상에 동작시키지 않는다. 여러 VM에서 실행되는 컨트롤 플레인 설정의 예제를 보려면 kubeadm을 사용하여 고가용성 클러스터 만들기를 확인해본다.


1) kube-apiserver

API 서버는 쿠버네티스 API를 노출하는 쿠버네티스 컨트롤 플레인 컴포넌트이다. API 서버는 쿠버네티스 컨트롤 플레인의 프론트 엔드이다.


쿠버네티스 API 서버의 주요 구현은 kube-apiserver이다. kube-apiserver는 수평으로 확장되도록 디자인되었다. 즉, 더 많은 인스턴스를 배포해서 확장할 수 있다. 여러 kube-apiserver 인스턴스를 실행하고, 인스턴스간의 트래픽을 균형있게 조절할 수 있다.


2) etcd

모든 클러스터 데이터를 담는 쿠버네티스 뒷단의 저장소로 사용되는 일관성·고가용성 키-값 저장소.


쿠버네티스 클러스터에서 etcd를 뒷단의 저장소로 사용한다면, 이 데이터를 백업하는 계획은 필수이다.


etcd에 대한 자세한 정보는, 공식 문서를 참고한다.


3) kube-scheduler

노드가 배정되지 않은 새로 생성된 파드 를 감지하고, 실행할 노드를 선택하는 컨트롤 플레인 컴포넌트.


스케줄링 결정을 위해서 고려되는 요소는 리소스에 대한 개별 및 총체적 요구 사항, 하드웨어/소프트웨어/정책적 제약, 어피니티(affinity) 및 안티-어피니티(anti-affinity) 명세, 데이터 지역성, 워크로드-간 간섭, 데드라인을 포함한다.


4) kube-controller-manager

컨트롤러 프로세스를 실행하는 컨트롤 플레인 컴포넌트.


논리적으로, 각 컨트롤러는 분리된 프로세스이지만, 복잡성을 낮추기 위해 모두 단일 바이너리로 컴파일되고 단일 프로세스 내에서 실행된다.


이들 컨트롤러는 다음을 포함한다.


  • 노드 컨트롤러: 노드가 다운되었을 때 통지와 대응에 관한 책임을 가진다.
  • 레플리케이션 컨트롤러: 시스템의 모든 레플리케이션 컨트롤러 오브젝트에 대해 알맞은 수의 파드들을 유지시켜 주는 책임을 가진다.
  • 엔드포인트 컨트롤러: 엔드포인트 오브젝트를 채운다(즉, 서비스와 파드를 연결시킨다.)
  • 서비스 어카운트 & 토큰 컨트롤러: 새로운 네임스페이스에 대한 기본 계정과 API 접근 토큰을 생성한다.


5) cloud-controller-manager

클라우드별 컨트롤 로직을 포함하는 쿠버네티스 컨트롤 플레인 컴포넌트이다. 클라우드 컨트롤러 매니저를 통해 클러스터를 클라우드 공급자의 API에 연결하고, 해당 클라우드 플랫폼과 상호 작용하는 컴포넌트와 클러스터와만 상호 작용하는 컴포넌트를 구분할 수 있게 해준다.


cloud-controller-manager는 클라우드 제공자 전용 컨트롤러만 실행한다. 자신의 사내 또는 PC 내부의 학습 환경에서 쿠버네티스를 실행 중인 경우 클러스터에는 클라우드 컨트롤러 매니저가 없다.


kube-controller-manager와 마찬가지로 cloud-controller-manager는 논리적으로 독립적인 여러 컨트롤 루프를 단일 프로세스로 실행하는 단일 바이너리로 결합한다. 수평으로 확장(두 개 이상의 복제 실행)해서 성능을 향상시키거나 장애를 견딜 수 있다.


다음 컨트롤러들은 클라우드 제공 사업자의 의존성을 가질 수 있다.


  • 노드 컨트롤러: 노드가 응답을 멈춘 후 클라우드 상에서 삭제되었는지 판별하기 위해 클라우드 제공 사업자에게 확인하는 것
  • 라우트 컨트롤러: 기본 클라우드 인프라에 경로를 구성하는 것
  • 서비스 컨트롤러: 클라우드 제공 사업자 로드밸런서를 생성, 업데이트 그리고 삭제하는 것


6. 노드 컴포넌트

노드 컴포넌트는 동작 중인 파드를 유지시키고 쿠버네티스 런타임 환경을 제공하며, 모든 노드 상에서 동작한다.


1) kubelet

클러스터의 각 노드에서 실행되는 에이전트. Kubelet은 파드에서 컨테이너가 확실하게 동작하도록 관리한다.


kubelet은 다양한 메커니즘을 통해 제공된 파드 스펙(PodSpec)의 집합을 받아서 컨테이너가 해당 파드 스펙에 따라 건강하게 동작하는 것을 확실히 한다. kubelet은 쿠버네티스를 통해 생성되지 않는 컨테이너는 관리하지 않는다.


2) kube-proxy

kube-proxy는 클러스터의 각 노드에서 실행되는 네트워크 프록시로, 쿠버네티스의 서비스 개념의 구현부이다.


kube-proxy는 노드의 네트워크 규칙을 유지 관리한다. 이 네트워크 규칙이 내부 네트워크 세션이나 클러스터 바깥에서 파드로 네트워크 통신을 할 수 있도록 해준다.


kube-proxy는 운영 체제에 가용한 패킷 필터링 계층이 있는 경우, 이를 사용한다. 그렇지 않으면, kube-proxy는 트래픽 자체를 포워드(forward)한다.


3) 컨테이너 런타임

컨테이너 런타임은 컨테이너 실행을 담당하는 소프트웨어이다.


쿠버네티스는 여러 컨테이너 런타임을 지원한다. 도커(Docker)containerdCRI-O 그리고 Kubernetes CRI (컨테이너 런타임 인터페이스)를 구현한 모든 소프트웨어.


7. 애드온

애드온은 쿠버네티스 리소스(데몬셋디플로이먼트 등)를 이용하여 클러스터 기능을 구현한다. 이들은 클러스터 단위의 기능을 제공하기 때문에 애드온에 대한 네임스페이스 리소스는 kube-system 네임스페이스에 속한다.


선택된 일부 애드온은 아래에 설명하였고, 사용 가능한 전체 확장 애드온 리스트는 애드온을 참조한다.


1) DNS

여타 애드온들이 절대적으로 요구되지 않지만, 많은 예시에서 필요로 하기 때문에 모든 쿠버네티스 클러스터는 클러스터 DNS를 갖추어야만 한다.


클러스터 DNS는 구성환경 내 다른 DNS 서버와 더불어, 쿠버네티스 서비스를 위해 DNS 레코드를 제공해주는 DNS 서버다.


쿠버네티스에 의해 구동되는 컨테이너는 DNS 검색에서 이 DNS 서버를 자동으로 포함한다.


2) 웹 UI (대시보드)

대시보드는 쿠버네티스 클러스터를 위한 범용의 웹 기반 UI다. 사용자가 클러스터 자체뿐만 아니라, 클러스터에서 동작하는 애플리케이션에 대한 관리와 문제 해결을 할 수 있도록 해준다.


3) 컨테이너 리소스 모니터링

컨테이너 리소스 모니터링은 중앙 데이터베이스 내의 컨테이너들에 대한 포괄적인 시계열 매트릭스를 기록하고 그 데이터를 열람하기 위한 UI를 제공해 준다.


4) 클러스터-레벨 로깅

클러스터-레벨 로깅 메커니즘은 검색/열람 인터페이스와 함께 중앙 로그 저장소에 컨테이너 로그를 저장하는 책임을 진다.


References